4.6 Article Proceedings Paper

Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and 'smart' polymers

Journal

RADIATION PHYSICS AND CHEMISTRY
Volume 76, Issue 8-9, Pages 1409-1413

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2007.02.072

Keywords

smart polymers; N-isopropylacrylamide; nanobeads; UV-graft polymerization; microfluidics

Ask authors/readers for more resources

Microfluidic channels prepared from polydimethylsiloxane (PDMS) have been modified by UV-mediated graft polymerization of temperature-responsive polymers (poly[N-isopropyl acrylamide] or pNIPAAm), temperature- and pH-responsive copolymers (P[NIPAAm-co-acrylic acid (AAc)]), and a non-fouling hydrogel (polyethyleneglycol diacrylate, or PEGDA). This was done by presorbing a photosensitizer (PS) within the PDMS channel surface regions, contacting the different monomer solutions with the PS-containing surface under nitrogen, and irradiating with UV. The pNIPAAm-grafted surface was hydrophilic below its lower critical solution temperature (LCST), resisting non-specific adsorption, while it was hydrophobic above its LCST, now binding pNIPAAm-coated nanoparticles. Combined temperature- and pH-responsive surfaces were also prepared by UV radiation grafting a monomer mixture of pNIPAAm with AAc. The surfaces have been characterized by advancing water contact angle measurements. These smart microfluidic channels should be useful for many applications such as affinity separations and diagnostic assays. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available