4.7 Article

Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance

Journal

THEORETICAL AND APPLIED GENETICS
Volume 115, Issue 4, Pages 519-527

Publisher

SPRINGER
DOI: 10.1007/s00122-007-0585-2

Keywords

-

Ask authors/readers for more resources

Early testing prior to doubled haploid (DH) production is a promising approach in hybrid maize breeding. We (1) detennined the optimum allocation of the number of S I families, DH lines, and test locations for two different breeding schemes, (2) compared the maximum selection gain achievable under both breeding schemes, and (3) investigated limitations in the current method of DH production. Selection gain was calculated by numerical integration in two-stage breeding schemes with evaluation of testcross progenies of (1) DH lines in both stages (DHTC), or (2) S, families in the first and DH lines within S, families in the second stage (S1TC-DHTC). Different assumptions were made regarding the budget, variance components, and time of DH production within S, families. Maximum selection gain in S1TC-DHTC was about 10% larger than in DHTC, indicating the large potential of early testing prior to DH production. The optimum allocation of test resources in S1TC-DHTC involved similar numbers of test locations and test candidates in both stages resulting in a large optimum number of S I families in the first stage and DH lines within the best two S, families in the second stage. The longer cycle length of S1TC-DHTC can be compensated by haploid induction of individual S, plants instead of S 1 families. However, this reduces selection gain largely due to the current limitations in the DH technique. Substantial increases in haploid induction and chromosome doubling rates as well as reduction in costs of DH production would allow early testing of S, lines and subsequent production and testing of DH lines in a breeding scheme that combines high selection gain with a short cycle length.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available