4.2 Article

Circadian and age-dependent expression patterns of GLUT2 and glucokinase in the pancreatic β-cell of diabetic and nondiabetic rats

Journal

HORMONE AND METABOLIC RESEARCH
Volume 39, Issue 8, Pages 567-574

Publisher

GEORG THIEME VERLAG KG
DOI: 10.1055/s-2007-984471

Keywords

glucose sensing; diabetes; GK rat; real-time RT-PCR; immunohistochemistry; perfusion

Ask authors/readers for more resources

Alterations in glucose sensing are well-known in both humans and animal models of non-insulin-dependent diabetes mellitus. However, the circadian- and age-dependent expression of glucose-sensing genes has not previously been investigated in vivo. In the present paper, we show a progressive loss of beta-cell GLUT2-mRNA and, by immunocytochernistry, a gain of soluble, cytoplasmic GLUT2-protein in Goto-Kakizaki rat islets. We report that GLUT2-mRNA shows significant diurnal variation, which is stronger in metabolically healthy rats. We also demonstrate the significant diurnal variation of glucokinase-mRNA, with higher levels in the pancreas of 6-week-old Goto-Kakizaki rats than in Wistar rats. This leads to a maximum glucose phosphorylation capacity in-phase with food intake, enhanced glucose-stimulated insulin secretion, and prevents postprandial hyperglycemia. Perfusion experiments showed a reduction in glucose-stimulated insulin secretion in Goto-Kakizaki rat islets with an impaired first phase. Hyperglycemia and hypoinsulinemia in newborn and up to 3-week-old Goto-Kakizaki rats are thus probably due to reduced pancreatic beta-cell content, reduced beta-cell insulin content and impaired glucose sensing. The de-compensation of the metabolic situation in 42-week-old Goto-Kakizaki rats is likely to be caused by beta-cell destruction accompanied by negligible accumulation of GLUT2 in the cell membrane and further reduction of glucokinase expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available