4.5 Article

Amyloid precursor protein intracellular domain modulates cellular calcium homeostasis and ATP content

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 102, Issue 4, Pages 1264-1275

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2007.04627.x

Keywords

Alzheimer's disease; amyloid precursor protein; APP intracellular domain; ATP; calcium; mitochondria; presenilin; gamma-secretase

Ask authors/readers for more resources

Consecutive cleavages of amyloid precursor protein (APP) generate APP intracellular domain (AICD). Its cellular function is still unclear. In this study, we investigated the functional role of AICD in cellular Ca2+ homeostasis. We could confirm previous observations that endoplasmic reticulum Ca2+ stores contain less calcium in cells with reduced APP y-secretase cleavage products, increased AICD degradation, reduced AICD expression or in cells lacking APP. In addition, we observed an enhanced resting cytosolic calcium concentration under conditions where AICD is decreased or missing. In view of the reciprocal effects of Ca2+ on mitochondria and of mitochondria on Ca2+ homeostasis, we analysed further the cellular ATP content and the mitochondrial membrane potential. We observed a reduced ATP content and a mitochondrial hyperpolarisation in cells with reduced amounts of AICD. Blockade of mitochondrial oxidative phosphorylation chain in control cells lead to similar alterations as in cells lacking AICD. On the other hand, substrates of Complex II rescued the alteration in Ca2+ homeostasis in cells lacking AICD. Based on these observations, our findings indicate that alterations observed in endoplasmic reticulum Ca2+ storage in cells with reduced amounts of AICD are reciprocally linked to mitochondrial bioenergetic function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available