4.6 Article

Fractional quantum Hall effect in optical lattices

Journal

PHYSICAL REVIEW A
Volume 76, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.76.023613

Keywords

-

Ask authors/readers for more resources

We analyze a recently proposed method to create fractional quantum Hall (FQH) states of atoms confined in optical lattices [A. Sorensen , Phys. Rev. Lett. 94, 086803 (2005)]. Extending the previous work, we investigate conditions under which the FQH effect can be achieved for bosons on a lattice with an effective magnetic field and finite on-site interaction. Furthermore, we characterize the ground state in such systems by calculating Chern numbers which can provide direct signatures of topological order and explore regimes where the characterization in terms of wave-function overlap fails. We also discuss various issues which are relevant for the practical realization of such FQH states with ultracold atoms in an optical lattice, including the presence of a long-range dipole interaction which can improve the energy gap and stabilize the ground state. We also investigate a detection technique based on Bragg spectroscopy to probe these systems in an experimental realization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available