4.7 Article

Multi-walled carbon nanotubes as sorptive material for solventless in-tube microextraction (ITEX2)-a factorial design study

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 405, Issue 26, Pages 8387-8395

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-013-7249-7

Keywords

Carbon nanotubes; In-tubemicroextraction; Design of experiment; GC-MS; VOCs; Water samples

Funding

  1. German Research Foundation [SCHM 1372/10-1]

Ask authors/readers for more resources

Multi-walled carbon nanotubes were evaluated as sorptive packing material for in-tube microextraction (ITEX2) in combination with GC-MS for the analysis of benzene, toluene, ethylbenzene, xylenes, and naphthalene in aqueous samples. For method development, a three-level full factorial design of experiment (DoE) was performed incorporating extraction temperature, number of extraction strokes, and extraction flow. The statistical analysis of method development showed that all considered extraction parameters significantly affected the extraction yield. Furthermore, it was shown that some factors significantly interacted with each other, which indicates the advantage of using DoE for method development. The thereby optimized ITEX2 protocol was validated regarding its linear dynamic range, method detection limit (MDL), and precision. The MDLs of investigated analytes ranged between 2 ng L-1 for naphthalene and 11 ng L-1 for p-xylene. The relatively low MDL obtained for naphthalene, despite its comparably low air-water partitioning, can be explained by its strong interaction with carbon nanotubes. All obtained MDLs are at least comparable to previous reports on microextraction techniques, emphasizing both the quality of ITEX2 and the highly promising sorbent characteristics of carbon nanotubes. Furthermore, the method was applied to three real samples, which demonstrated good recoveries of analytes from tap water, a bank filtrate, and an effluent from a wastewater treatment plant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available