4.5 Article

Caenorhabditis elegans SMG-2 selectively marks mRNAs containing premature translation termination codons

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 27, Issue 16, Pages 5630-5638

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00410-07

Keywords

-

Funding

  1. NIGMS NIH HHS [GM50933, R01 GM050933] Funding Source: Medline

Ask authors/readers for more resources

Eukaryotic mRNAs containing premature translation termination codons (PTCs) are rapidly degraded by a process termed nonsense-mediated mRNA decay (NMD). We examined protein-protein and protein-RNA interactions among Caenorhabditis elegans proteins required for NMD. SMG-2, SMG-3, and SMG-4 are orthologs of yeast (Saccharomyces cerevisiae) and mammalian Upf1, Upf2, and Upf3, respectively. A combination of immunoprecipitation and yeast two-hybrid experiments indicated that SMG-2 interacts with SMG-3, SMG-3 interacts with SMG-4, and SMG-2 interacts indirectly with SMG-4 via shared interactions with SMG-3. Such interactions are similar to those observed in yeast and mammalian cells. SMG-2-SMG-3-SMG-4 interactions require neither SMG-2 phosphorylation, which is abolished in smg-1 mutants, nor SMG-2 dephosphorylation, which is reduced or eliminated in smg-5 mutants. SMG-2 preferentially associates with PTC-containing mRNAs. We monitored the association of SMG-2, SMG-3, and SMG-4 with mRNAs of five endogenous genes whose mRNAs are alternatively spliced to either contain or not contain PTCs. SMG-2 associates with both PTC-free and PTC-containing mRNPs, but it strongly and preferentially associates with (marks) those containing PTCs. SMG-2 marking of PTC-mRNPs is enhanced by SMG-3 and SMG-4, but SMG-3 and SMG-4 are not detectably associated with the same mRNPs. Neither SMG-2 phosphorylation nor dephosphorylation is required for selective association of SMG-2 with PTC-containing mRNPs, indicating that SMG-2 is phosphorylated only after premature terminations have been discriminated from normal terminations. We discuss these observations with regard to the functions of SMG-2 and its phosphorylation during NMD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available