4.5 Article

Toxicity of luminescent silica nanoparticles to living cells

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 20, Issue 8, Pages 1126-1133

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx7001959

Keywords

-

Funding

  1. NIEHS NIH HHS [ES 14690] Funding Source: Medline

Ask authors/readers for more resources

Luminescent nanomaterials can provide high-intensity and photostable luminescent signals when used as labeling materials for the determination of trace amounts of analytes. However, a major concern that has arisen is whether the nanomaterials cause toxic effects in living systems. Here, we address this problem through a systematic investigation of the cytotoxicity and genotoxicity of luminescent silica nanoparticles. These nanoparticles are intensely luminescent labeling materials for ultrasensitive determination of biological samples. The investigation of genotoxicity of the nanomaterials was carried out from two perspectives. First, the integrity of the DNA was examined by detecting DNA base modification, strand breaks, and increased DNA repair activity to recover the damage. Second, different sets of cellular DNAs, including nuclear DNA extracts and the whole genomic DNAs, were examined. Furthermore, to fully assess DNA damage by the nanoparticles, isolated genomic DNAs were directly exposed to the nanoparticles. The cytotoxicity of the nanoparticle was detected by measuring the cell proliferation rate, cell death, and death patterns (necrosis and apoptosis) after the nanoparticle treatments. Results show no significant toxic effects due to the luminescent nanoparticles at the molecular and cellular levels below a concentration of 0.1 mg/mL. Our study indicates that the luminescent silica nanoparticle is a promising labeling reagent for various biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available