4.5 Article

Microtubules regulate PI-3K activity and recruitment to the phagocytic cup during Fcγ receptor-mediated phagocytosis in nonelicited macrophages

Journal

JOURNAL OF LEUKOCYTE BIOLOGY
Volume 82, Issue 2, Pages 417-428

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1189/jlb.0706469

Keywords

pseudopod; phosphoinositides

Ask authors/readers for more resources

Phagocytosis is a complex sequence of events involving coordinated remodeling of the plasma membrane with the underlying cytoskeleton. Although the role of the actin cytoskeleton is becoming increasingly elucidated, the role of microtubules (MTs) remains poorly understood. Here, we examine the role of MTs during Fc gamma R-mediated phagocytosis in RAW264.7 mouse macrophages. We observe that MTs extend into the phagosomal cups. The MT-depolymerizing agents, colchicine and nocodazole, cause a sizeable reduction in phagocytosis of large particles in RAW264.7 cells. Phagocytosis in primed macrophages is unaffected by MT-depolymerizing agents. However, activation of macrophages coincides with an increased population of drug-stable MTs, which persist in functional phagocytic cups. Scanning electron microscopy analysis of unprimed macrophages reveals that pseudopod formation is reduced markedly following colchicine treatment, which is not a consequence of cell rounding. MT depolymerization in these cells does not affect particle binding, Syk, or Grb2-associated binder 2 recruitment or phosphotyrosine accumulation at the site of phagocytosis. Ras activation also proceeds normally in macrophages treated with colchicine. However, MT disruption causes a decrease in accumulation of AKT-pleckstrin homology-green fluorescent protein, a probe that binds to PI-3K products at the sites of particle binding. A corresponding decline in activated AKT is observed in colchicine-treated cells using immunoblotting with a phospho-specific-AKT (ser473) antibody. Furthermore, the translocation of the p85 alpha regulatory subunit of PI-3K is reduced at the phagocytic cup in colchicine-treated cells. These findings suggest that MTs regulate the recruitment and localized activity of PI-3K during pseudopod formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available