4.5 Article

A role for type I signal peptidase in Staphylococcus aureus quorum sensing

Journal

MOLECULAR MICROBIOLOGY
Volume 65, Issue 3, Pages 780-798

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2958.2007.05830.x

Keywords

-

Funding

  1. NIGMS NIH HHS [T32 GM007337] Funding Source: Medline

Ask authors/readers for more resources

The Staphylococcus aureus Agr quorum-sensing system modulates the expression of extracellular virulence factors. The Agr system is controlled by an autoinducing peptide (AIP) molecule that is secreted during growth. In the AIP biosynthetic pathway, two proteolytic events are required to remove the leader and tail segments of AgrD, the peptide precursor of AIR The only protein known to be involved in this pathway is AgrB, a membrane endopeptidase that removes the AgrD carboxy-tail. We designed a synthetic peptide substrate and developed an assay to detect peptidases that can remove the N-terminal leader of AIR Several peptidase activities were detected in S. aureus extracts and these activities were present in both wild-type and agr mutant strains. Only one of these peptidases cleaved in the correct position and all properties of this enzyme were consistent with type I signal peptidase. Subsequent cloning and purification of the two known S. aureus signal peptidases, SpsA and SpsB, demonstrated that only SpsB catalysed this activity in vitro. To investigate the role of SpsB in AIP biosynthesis, SpsB pepticle inhibitors were designed and characterized. The most effective inhibitor blocked SpsB activity in vitro and showed antibacterial activity against S. aureus. Importantly, the inhibitor reduced expression of an Agr-dependent reporter and inhibited AIP production in S. aureus, indicating a role for SpsB in quorum sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available