4.7 Article

Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 212, Issue 2, Pages 386-400

Publisher

WILEY
DOI: 10.1002/jcp.21038

Keywords

-

Ask authors/readers for more resources

Melanoma is a highly metastatic cancer resistant to current chemotherapeutic and radiotherapeutic approaches. Several studies have shown that interactions between cancer cells and the extracellular matrix (ECM) are critical for the survival and invasion of metastatic cancer cells. In this study, we examine the effects of methylselenol generated from selenomethionine (SeMet) by methioninase (METase) on cell proliferation, adhesion, and expression of integrins in murine melanoma B I 6F 10 cells, which are metastatic in the lungs of syngeneic C57BL/6] mice. Combined treatment with SeMet-METase decreased the expression of integrins alpha-(4), beta(1), alpha(v), and beta(3), and inhibited melanoma-ECM adhesion. Caspase-mediated apoptosis was induced following loss of cell adherence. Phosphorylation of focal adhesion kinase (FAK) and Akt, related to integrin-mediated survival, were decreased upon treatment with SeMet-METase while phosphorlation of p38, PKC-delta, and I kappa B alpha increased. In the presence of specific inhibitors of p38, PKC-delta, and NF-kappa B, expression of integrins and cell adhesion to ECM were maintained and cell apoptosis was prevented in SeMet-METase-treated melanoma cells. Treatment with caspase inhibitors restored cell viability and blocked poly (ADP-ribose) polymerase (PARP) cleavage, but did not restore integrin expression and cell adhesion to ECMs reduced by SeMet-METase. Based on these results, we propose that combined treatment with SeMet-METase induces caspase-mediated apoptosis in melanoma cells by altering integrin expression and adhesion. Furthermore, activation of p38, PKC-delta, and NF-kappa B is a prerequisite for the down-regulation of integrin expression, followed by detachment-mediated apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available