4.7 Article

Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 402, Issue 6, Pages 2069-2077

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-011-5650-7

Keywords

Glucose biosensor; FAD; Glucose dehydrogenase; Os-polymer; Deglycosylation; Biofuel cell

Funding

  1. Higher Education Commission of Pakistan
  2. Swedish Research Council (VR) [621-2007-4124, 2010-5031]
  3. European Commission [NMP4-SL-2009-229255]

Ask authors/readers for more resources

In this study, different flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) were characterized electrochemically after wiring them with an osmium redox polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)(10)Cl](+) on graphite electrodes. One tested FADGDH was that recently discovered in Glomerella cingulata (GcGDH), another was the recombinant form expressed in Pichia pastoris (rGcGDH), and the third was a commercially available glycosylated enzyme from Aspergillus sp. (AspGDH). The performance of the Os-polymer wired GDHs on graphite electrodes was tested with glucose as the substrate. Optimal operational conditions and analytical characteristics like sensitivity, linear ranges and current density of the different FADGDHs were determined. The performance of all three types of FADGDHs was studied at physiological conditions (pH 7.4). The current densities measured at a 20 mM glucose concentration were 494 +/- 17, 370 +/- 24, and 389 +/- 19 mu A cm(-2) for GcGDH, rGcGDH, and AspGDH, respectively. The sensitivities towards glucose were 2.16, 1.90, and 1.42 mu A mM(-1) for GcGDH, rGcGDH, and AspGDH, respectively. Additionally, deglycosylated rGcGDH (dgrGcGDH) was investigated to see whether the reduced glycosylation would have an effect, e.g., a higher current density, which was indeed found. GcGDH/Os-polymer modified electrodes were also used and investigated for their selectivity for a number of different sugars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available