4.8 Article

Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device

Journal

BIOMATERIALS
Volume 28, Issue 24, Pages 3508-3516

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.04.016

Keywords

tissue engineering; myocardial tube; cell sheet; wrapping device; inner pressure

Ask authors/readers for more resources

Regenerative medicine involving injection of isolated cells and transplantation of tissue-engineered myocardial patches, has received significant attention as an alternative method to repair damaged heart muscle. In the present study, as the next generation of myocardial tissue engineering we demonstrate the in vitro fabrication of pulsatile myocardial tubes using cell sheet engineering technologies. Three neonatal rat cardiomyocyte sheets, which were harvested from temperature-responsive culture dishes, were wrapped around fibrin tubes using a novel cell sheet-wrapping device. The tubular constructs demonstrated spontaneous, synchronized pulsation within 3 h after cell sheet wrapping. Contractile force measurements showed that the contractile force increased in accordance with both increasing rest length (Starling mechanism) and increasing extracellular Ca2+ concentration. Furthermore, the tissue-engineered myocardial tubes presented measurable inner pressure changes evoked by tube contraction (0.11 +/- 0.01 mmHg, max 0.15 mmHg, n = 5). Histological analyses revealed both well-differentiated sarcomeres and diffuse gap junctions within the myocardial tissues that resembled native cardiac muscle. These data indicate that tissue-engineered myocardial tubes have native heart-like structure and function. These new myocardial tissue constructs should be useful for future applications in physiological studies and pharmacological screening, and present a possible core technology for the creation of engineered tissues capable of independent cardiac assistance. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available