4.2 Article

Changes in goal selection induced by cue conflicts are in register with predictions from changes in place cell field locations

Journal

BEHAVIORAL NEUROSCIENCE
Volume 121, Issue 4, Pages 751-763

Publisher

AMER PSYCHOLOGICAL ASSOC/EDUCATIONAL PUBLISHING FOUNDATION
DOI: 10.1037/0735-7044.121.4.751

Keywords

navigation; place cell; hippocampus; accuracy; spatial behavior

Funding

  1. PHS HHS [NIH 20686] Funding Source: Medline

Ask authors/readers for more resources

In the cognitive mapping theory of hippocampal function, currently active place cells represent a rat's spatial location (J. O'Keefe & L. Nadel, 1978). A systematic shift of firing field locations should therefore produce a similar shift in a rat's judgment of its location. A. A. Fenton, G. Csizmadia, and R. U. Muller (2000a) recorded place cells in cylinders with 2 cue cards separated by 135 degrees. When the separation was changed, firing fields moved systematically, as described by a vector-field equation (A. A. Fenton, G. Csizmadia, & R. U. Muller, 2000b). Given this cohesive movement of firing fields, the mapping theory predicts that a rat's decisions about the location of an unmarked goal should move after card separation changes, as described by the vector-field equation. The authors tested this reasoning with a task in which the rat earned a food reward by pausing in a small, unmarked goal zone. When cues were shifted in the absence of reward, goal choice shifts were accurately predicted by the vector-field equation, providing strong support for the notion that a rat's judgment of its spatial location is intimately related to the across-cell discharge pattern of simultaneously active place cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available