4.6 Article

Equation of state and optical properties of warm dense helium

Journal

PHYSICAL REVIEW B
Volume 76, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.075112

Keywords

-

Ask authors/readers for more resources

We investigate the physical properties of warm dense helium under the conditions found in the atmospheres of cool white dwarfs using both a chemical model and ab initio simulations. A chemical model is developed for the low-ionization limit that includes the species He, He+, He-2(+), and electrons, and interactions between them. The ab initio calculations consist in quantum molecular dynamics (QMD) simulations. We use the generalized gradient approximation (GGA) to calculate the equation of state and the electrical and optical properties within the linear response theory. We further use an exact exchange hybrid (PBE0) density functional as well as the GW approximation to estimate the uncertainties on the electrical and optical properties resulting from the GGA approximation. While both the chemical model and the QMD simulations are in excellent agreement with the measured equation of state, a qualitative discrepancy exists with the measured conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available