4.5 Article

Expression, localisation and activity of ATP binding cassette (ABC) family of drug transporters in human amnion membranes

Journal

PLACENTA
Volume 28, Issue 8-9, Pages 868-877

Publisher

W B SAUNDERS CO LTD
DOI: 10.1016/j.placenta.2007.03.001

Keywords

placenta; fetal membranes; amnion; ABC transporters; microarrays

Ask authors/readers for more resources

Placental ATP-binding cassette (ABC) transporters limit fetal exposure to xenobiotics by regulating transplacental passage into the fetal circulation; their expression and function in fetal membranes, however, has not been studied. In the present study the expression, localisation and function of ABC transporters in human amnion was examined to explore their potential role in modulating amniotic fluid drug disposition in pregnancy. Single-assay oligo-microarrays were used to profile amnion gene expression, and drug transporters expressed at significant levels were identified and selected for further studies. The expression of ABCG2/breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRP) 1 (ABCC1), 2 (ABCC2) and 5 (ABCC5) was detected on the arrays, and verified by RT-PCR and immunoblotting. On confocal microscopy of fetal membrane cryosections, MRP1 and NIRP5 were immunolocalised to both apical and basolateral surfaces of the amniotic epithelium, while MRP2 was expressed at low levels only in the apical membrane. BCRP in contrast showed cytoplasmic staining throughout the amniotic epithelium. In addition to the amnion, MRP1 and BCRP immunostaining was observed in the chorion and the decidua. Cell accumulation studies using selective MRP and BCRP inhibitors showed the transporters to be functionally active in amnion epithelial monolayer cultures. In contrast, transwell transport studies using intact amnion membranes did not show significant vectorial transport. These findings identify the amnion as a novel site of ABC drug transporter expression. Functional studies indicate that they may act primarily to prevent cellular xenobiotic accumulation, rather than to confer fetal protection through reduced accumulation in amniotic fluid. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available