4.5 Article

Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00133.2007

Keywords

statin; Rho; proliferation

Funding

  1. PHS HHS [HLBI-32723] Funding Source: Medline

Ask authors/readers for more resources

The HMG-CoA reductase inhibitors, statins, have pleiotropic effects which may include interference with the isoprenylation of Ras and Rho small GTPases. Statins have beneficial effects in animal models of pulmonary hypertension, although their mechanisms of action remain to be determined. Serotonin [5-hydroxytryptamine (5-HT)] is implicated in the process of pulmonary artery smooth muscle (PASM) remodeling as part of the pathophysiology of pulmonary hypertension. We examined the effect of atorvastatin on 5-HT-induced PASM cell responses. Atorvastatin dose dependently inhibits 5-HT-induced mitogenesis and migration of cultured bovine PASM cells. Inhibition by atorvastatin was reversed by mevalonate and geranylgeranylpyrophosphate (GGPP) supplement, suggesting that the statin targets a geranylgeranylated protein such as Rho. Concordantly, atorvastatin inhibits 5-HT-induced cellular RhoA activation, membrane localization, and Rho kinase-mediated phosphorylation of myosin phosphatase-1 subunit. Atorvastatin reduced activated RhoA-induced serum response factor-mediated reporter activity in HEK293 cells, indicating that atorvastatin inhibits Rho signaling, and this was reversed by GGPP. While 5-HT-induced ERK MAP and Akt kinase activation were unaffected by atorvastatin, 5-HT-induced ERK nuclear translocation was attenuated in a GGPP-dependent fashion. These studies suggest that atorvastatin inhibits 5-HT-induced PASM cell mitogenesis and migration through targeting isoprenylation which may, in part, attenuate the Rho pathway, a mechanism that may apply to statin effects on in vivo models of pulmonary hypertension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available