4.6 Article

Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres

Journal

OPTICS LETTERS
Volume 32, Issue 15, Pages 2200-2202

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.32.002200

Keywords

-

Categories

Ask authors/readers for more resources

Quantitative measurements of the vibrational eigenmodes in ultrahigh-Q silica microspheres are reported. The modes are excited via radiation-pressure-induced dynamical backaction of light confined in the optical whispering-gallery modes of the microspheres (i.e., via the parametric oscillation instability). Two families of modes are studied and their frequency dependence on sphere size investigated. The measured frequencies are in good agreement both with Lamb's theory and numerical finite-element simulation and are found to be proportional to the sphere's inverse diameter. In addition, the quality factors of the vibrational modes are studied. (C) 2007 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available