4.7 Article

Capillary electrophoretic separation of nanoparticles

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 399, Issue 8, Pages 2831-2842

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-011-4650-y

Keywords

Capillary electrophoresis; Micelles; Nanocrystals; Focusing; Oligomer

Funding

  1. US Air Force Research Laboratory and Air Force Office of Scientific Research [FA9550-06-1-0365, N 204 142837]
  2. Ministry of Science and Higher Education (Poland)

Ask authors/readers for more resources

In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N similar to 10(7)) and a typical CZE peak for NCs (N similar to 10(5)). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEF(height)) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available