4.6 Article

Bulk viscosity in a cold CFL superfluid

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1475-7516/2007/08/001

Keywords

neutron stars; gravity

Ask authors/readers for more resources

We compute one of the bulk viscosity coeffcients of cold color -flavor locked ( CFL) quark matter in the temperature regime where the contribution of mesons, quarks and gluons to transport phenomena is Boltzmann suppressed. In that regime dissipation occurs due to collisions of super fluid phonons, the Goldstone modes associated to the spontaneous breaking of baryon symmetry. We first review the hydrodynamics of relativistic superfluids, and recall that there are at least three bulk viscosity coeffcients in these systems. We then compute the bulk viscosity coeffcient associated to the normal fluid component of the superfluid. In our analysis we use Son's effective field theory for the superfluid phonon, amended to include scale breaking effects proportional to the square of the strange quark mass m(s). We compute the bulk viscosity at leading order in the scale breaking parameter, and find that it is dominated by collinear splitting and joining processes. The resulting transport coeffcient is zeta = 0.011 m(s)(4)/T, growing at low temperature T until the phonon fluid description stops making sense. Our results are relevant for studying the rotational properties of a compact star formed by CFL quark matter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available