4.7 Article

A new morphospecies of Microcystis sp forming bloom in the Cheffia dam (Algeria):: Seasonal variation of microcystin concentrations in raw water and their removal in a full-scale treatment plant

Journal

ENVIRONMENTAL TOXICOLOGY
Volume 22, Issue 4, Pages 347-356

Publisher

WILEY
DOI: 10.1002/tox.20275

Keywords

cyanobacteria; Microcystis sp.; microcystins; PP2A inhibition test; water processing

Ask authors/readers for more resources

Toxic cyanobacterial blooms are an increasing problem in Algeria. The production of cyanotoxins (microcystins) and their presence in drinking water represent growing hazards to human health. In this study, seasonal variations in the concentrations of total microcystins and physicochemical parameters (pH, temperature, dissolved oxygen, nitrate, orthophosphate, and chlorophyll-a) were analyzed in the Cheffia dam (Algeria), mainly used to supply drinking water. The removal of cyanobacterial cells and microcystins was also evaluated in full-scale plant associated with the Cheffia reservoir. The levels of microcystins (MCYSTs) in both raw and drinking water were evaluated using the protein phosphatase type 2A (PP2A) inhibition test as MCYST-LR equivalents. Identification of microcystin variants was achieved by LC/MS/MS. During the period of study (March-December 2004), microscopic observation showed the dominance in the autumn months (September-November) of a new morphospecies of Microcystis sp. The MCYST-LR equivalent concentrations in raw water varied between 50.8 and 28,886 ng L-1. The highest level of toxins was observed in October 2004 and was significantly correlated with the chlorophyll-a. Three variants of microcystins assigned as microcystin-YR (MCYST-YR), microcystin-LR (MCYST-LR), and 6Z-Adda stereoisomer of MCYST-LR were observed in the crude extract of the Microcystis sp. bloom sample. During the bloom period, total elimination of Microcystis sp. and toxins were achieved through a classical treatment plant comprised of coagulation and flocculation, powdered activated carbon at 15 mg L-1, slow sand filtration and chlorination before storage. (C) 2007 Wiley Periodicals, Inc. Environ Toxicol 22:347-356, 2007.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available