4.4 Article

Genetic quality of individuals impacts population dynamics

Journal

ANIMAL CONSERVATION
Volume 10, Issue 3, Pages 275-283

Publisher

WILEY
DOI: 10.1111/j.1469-1795.2007.00120.x

Keywords

extinction; density dependence; environmental stochasticity; genetic variation; inbreeding-stress interaction; population dynamics; wolf spiders

Ask authors/readers for more resources

Ample evidence exists that an increase in the inbreeding level of a population reduces the value of fitness components such as fecundity and survival. It does not follow, however, that these decreases in the components of fitness impact population dynamics in a way that increases extinction risk, because virtually all species produce far more offspring than can actually survive. We analyzed the effects of the genetic quality (mean fitness) of individuals on the population growth rate of seven natural populations in each of two species of wolf spider in the genus Rabidosa, statistically controlling for environmental factors. We show that populations of different sizes, and different inbreeding levels, differ in population dynamics for both species. Differences in population growth rates are especially pronounced during stressful environmental conditions (low food availability) and the stressful environment affects smaller populations (< 500 individuals) disproportionately. Thus, even in an invertebrate with an extremely high potential growth rate and strong density-dependent mortality rates, genetic factors contribute directly to population dynamics and, therefore, to extinction risk. This is only the second study to demonstrate an impact of the genetic quality of individual genotypes on population dynamics in a wild population and the first to document strong inbreeding-environment interactions for fitness among populations. Endangered species typically exist at sizes of a few hundred individuals and human activities degrade habitats making them innately more stressful (e.g. global climate change). Therefore, the interaction between genetic factors and environmental stress has important implications for efforts aimed at conserving the Earth's biodiversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available