4.7 Article

Novel antibody derivatives for proteome and high-content analysis

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 397, Issue 8, Pages 3203-3208

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-010-3657-0

Keywords

Antibodies; Nanobodies; High-content analysis; Proteomics; Green fluorescent protein; Fluorescent proteins

Funding

  1. BMBF
  2. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

The understanding of cellular processes and their pathophysiological alterations requires comprehensive data on the abundance, distribution, modification, and interaction of all cellular components. On the one hand, artificially introduced fluorescent fusion proteins provide information about their distribution and dynamics in living cells but not about endogenous factors. On the other hand, antibodies can detect endogenous proteins, posttranslational modifications, and other cellular components but mostly in fixed and permeabilized cells. Here we highlight a new technology based on the antigen-binding domain of heavy-chain antibodies (VHH) from Camelidae. These extremely stable VHH domains can be produced in bacteria, coupled to matrices, and used for affinity purification and proteome studies. Alternatively, these VHH domains can be fused with fluorescent proteins and expressed in living cells. These fluorescent antigen-binding proteins called chromobodies can be used to detect and trace proteins and other cellular components in vivo. Chromobodies can, in principle, detect any antigenic structure, including posttranslational modifications, and thereby dramatically expand the quality and quantity of information that can be gathered in high-content analysis. Depending on the epitope chosen, chromobodies can also be used to modulate protein function in living cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available