4.6 Article

The glycosaminoglycan chain of decorin plays an important role in collagen fibril formation at the early stages of fibrillogenesis

Journal

FEBS JOURNAL
Volume 274, Issue 16, Pages 4246-4255

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2007.05951.x

Keywords

3D model; collagen fibrils; decorin-null; fibroblasts; glycosaminoglycan chain; in vitro fibrillogenesis

Funding

  1. NCI NIH HHS [CA39481] Funding Source: Medline

Ask authors/readers for more resources

Decorin is a multifunctional small leucine-rich proteoglycan involved in the regulation of collagen fibrillogenesis. In patients with a variant of Ehlers-Danlos syndrome, about half of the secreted decorin lacks the single glycosaminoglycan side chain. Notably, these patients have a skin-fragility phenotype that resembles that of decorin null mice. In this study, we investigated the role of glycanated and unglycanated decorin on collagen fibrillogenesis. Glycosaminoglycan-free decorin, generated by mutating Ser4 of the mature protein core into Ala (DCN-S4A), showed reduced inhibition of fibrillogenesis compared with the decorin proteoglycan. Interestingly, using a 3D matrix generated by decorin-null fibroblasts, an increase in fibril diameter was found after the addition of decorin, and even greater effects were observed with DCN-S4A. To avoid potential side effects of artificial tags, adenoviruses containing decorin and DCN-S4A were used to transduce decorin-null fibroblasts prior to matrix formation. Both molecules were efficiently incorporated into the matrix, with no changes in collagen composition and network formation, or altered expression of the related proteoglycan biglycan. Both decorin and DCN-S4A mutants increased the collagen fibril diameter, with the latter showing the most prominent effects. These data show that at early stages of fibrillogenesis, the glycosaminoglycan chain of decorin has a reducing effect on collagen fibril diameter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available