4.5 Article

Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma

Journal

GENE THERAPY
Volume 14, Issue 15, Pages 1132-1142

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3302932

Keywords

neural stem cell; medulloblastoma; leptomeningeal dissemination; cytosine deaminase

Ask authors/readers for more resources

Medulloblastomas are highly malignant neuroectodermal cerebellar tumors of children. One of the reasons for the difficulty for the treatment of medulloblastomas is their inherent tendency to metastasize through the cerebrospinal fluid (CSF) pathway leading to leptomeningeal dissemination. Recently, genetically modified neural stem cells (NSCs) were shown to have the capability of selectively migrating into glioma mass and delivering therapeutic agents with significant therapeutic benefits. In the present study, we applied the NSC strategy to target medulloblastomas, particularly their leptomeningeal dissemination. We used NSCs that were retrovirally transduced with the cytosine deaminase gene (CD-NSCs). In vitro studies demonstrated that CD-NSCs had sufficient migratory activity toward medulloblastoma cells and exerted a remarkable bystander effect on these cells following the application of 5-fluorocytosine (5-FC). It is noteworthy that neutralization of the hepatocyte growth factor blocked their migration In animal studies using our leptomeningeal dissemination model, CD-NSCs implanted directly into CSF space were shown to distribute diffusely within the disseminated tumor cells and could provide remarkable antitumor effect after intraperitoneal administration of 5-FC. Furthermore, CD-NSC treatment followed by 5-FC administration prolonged survival periods significantly in experimental animals. Our data suggest that the CD-NSC strategy can also be applied to target leptomeningeal dissemination of medulloblastomas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available