4.7 Article

DC- and RF-GD-OES measurements of adsorbed organic monolayers on copper

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 395, Issue 6, Pages 1893-1900

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-009-2966-7

Keywords

GD-OES; Thiourea; Benzotriazole; Benzothiazole; Monolayer; Copper; Thin films; Depth profiling

Funding

  1. Spectruma Analytik GmbH (Hof, Germany)
  2. German Federation of Industrial Research Association [BR03152/04]

Ask authors/readers for more resources

Our direct current (DC)- and radiofrequency glow discharge optical emission spectroscopy (RF-GD-OES) measurements of adsorbed organic monolayers were inspired by the work of Shimizu et al., who presented the first example of depth profile analysis of an adsorbed monolayer by RF-GD-OES in 2004. The great potential of RF-GD-OES for analyses of layers with thicknesses in the subnanometer range was surprising. Shimizu et al. discussed not only the qualitative detection of atoms of the organic monolayer (C, H, N, S), but also the determination of the different orientation of the molecules relative to the surface due to a significant peak sequence. This latter assumption was questioned in the analytical community. We intend to demonstrate the potential of the GD-OES technique for surface analysis in terms of reliability and reproducibility by using an advanced vacuum instrumentation and presputtering with silicon. It will be shown that comparable measurements can be reproduced not only with RF-GD-OES but, above all, also with DC-GD-OES. The experimental steps to adsorb thiourea molecules on a copper substrate are described in detail. Further experiments with other organic molecules, e. g. benzotriazole (BTA) or benzothiazole (BTH), disprove the predicted correlation between the orientation of the molecules relative to the surface and the occurrence of peak separation. Ultimately, a quantification of compounds of the organic monolayer in the case of adsorbed thiourea is achieved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available