4.7 Article

Determining the absolute, chemical-heterogeneity-corrected molar mass averages, distribution, and solution conformation of random copolymers

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 396, Issue 4, Pages 1589-1598

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-009-3320-9

Keywords

Chemical heterogeneity; Copolymers; Multi-detector size-exclusion chromatography; Molar mass; Solution conformation

Ask authors/readers for more resources

We present a method by which to obtain the absolute, chemical-heterogeneity-corrected molar mass (M) averages and distributions of copolymers and apply the method to a gradient random copolymer of styrene and methyl methacrylate in which the styrene percentage decreases from approximately 30% to 19% as a function of increasing molar mass. The method consists of separation by size-exclusion chromatography (SEC) with detection using multi-angle static light scattering (MALS), differential viscometry (VISC), differential refractometry (DRI), and ultraviolet absorption spectroscopy (UV) and relies on the preferential absorption of styrene over methyl methacrylate at 260 nm. Using this quadruple-detector SEC/MALS/UV/VISC/DRI approach, the percentage of styrene (%St) in each elution slice is determined. This %St is then used to determine the specific refractive index increment, corrected for chemical composition, at each elution slice, which is then used to obtain the molar mass at each slice, corrected for chemical composition. From this corrected molar mass and from the chemical-composition-corrected refractometer response, the absolute, chemical-heterogeneity-corrected molar mass averages and distribution of the copolymer are calculated. The corrected molar mass and intrinsic viscosity at each SEC elution slice are used to construct a chemical-heterogeneity-corrected Mark-Houwink plot. The slice-wise-corrected M data are used, in conjunction with the MALS-determined R-G,R-z of each slice, to construct a conformation plot corrected for chemical heterogeneity. The corrected molar mass distribution (MMD) of the gradient copolymer extends over an approximately 30,000 g/mol wider range than the uncorrected MMD. Additionally, correction of the Mark-Houwink and conformation plots for the effects of chemical heterogeneity shows that the copolymer adopts a more compact conformation in solution than originally concluded.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available