4.6 Article

Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages

Journal

PLOS PATHOGENS
Volume 3, Issue 8, Pages 1082-1091

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.0030111

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI063331, R01 AI064748] Funding Source: Medline

Ask authors/readers for more resources

Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms of this activation remain poorly understood. We demonstrate here that caspase-1 activation and IL-1 beta processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC). We also show that Ipaf was critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC was dispensable. Unlike that observed in Salmonella and Legionella, caspase-1 activation induced by Shigella infection was independent of flagellin. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Autophagy induced by Shigella required an intact bacterial type III secretion system but not VirG protein, a bacterial factor required for autophagy in epithelial-infected cells. Treatment of macrophages with 3-methyladenine, an inhibitor of autophagy, enhanced pyroptosis induced by Shigella infection, suggesting that autophagy protects infected macrophages from pyroptosis. Thus, Ipaf plays a critical role in caspase-1 activation induced by Shigella independently of flagellin. Furthermore, the absence of Ipaf or caspase-1, but not ASC, regulates pyroptosis and the induction of autophagy in Shigella-infected macrophages, providing a novel function for NLR proteins in bacterial -host interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available