4.7 Article

Diffusion in a dendritic spine: The role of geometry

Journal

PHYSICAL REVIEW E
Volume 76, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.76.021922

Keywords

-

Ask authors/readers for more resources

Dendritic spines, the sites where excitatory synapses are made in most neurons, can dynamically regulate diffusing molecules by changing their shape. We present here a combination of theory, simulations, and experiments to quantify the diffusion time course in dendritic spines. We derive analytical formulas and compared them to Brownian simulations for the mean sojourn time a diffusing molecule stays inside a dendritic spine when either the molecule can reenter the spine head or not, once it is located in the spine neck. We show that the spine length is the fundamental regulatory geometrical parameter for the diffusion decay rate in the neck only. By changing the spine length, dendritic spines can be dynamically coupled or uncoupled to their parent dendrites, which regulates diffusion, and this property makes them unique structures, different from static dendrites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available