4.6 Article

Two distinct Low-pH steps promote entry of vaccinia virus

Journal

JOURNAL OF VIROLOGY
Volume 81, Issue 16, Pages 8613-8620

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00606-07

Keywords

-

Categories

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Entry of vaceinia virus into cells occurs by an endosomal route as well as through the plasma membrane. Evidence for an endosomal pathway was based on findings that treatment at a pH of <6 of mature virions attached to the plasma membrane enhances entry, whereas inhibitors of endosomal acidification reduce entry. Inactivation of infectivity by low-pH treatment of virions prior to membrane attachment is characteristic of many viruses that use the endosomal route. Nevertheless, we show here that the exposure of unattached vaccinia virus virions to low pH at 37 degrees C did not alter their infectivity. Instead, such treatment stably activated virions as indicated by their accelerated entry upon subsequent addition to cells, as measured by reporter gene expression. Moreover, the rate of entry was not further enhanced by a second low-pH treatment following adsorption to the plasma membrane. However, the entry of virions activated prior to adsorption remained sensitive to inhibitors of endosomal acidification, whereas virions treated with low pH after adsorption were resistant. Activation of virions by low pH was closely mimicked by proteinase digestion, suggesting that the two treatments operate through a related mechanism. Although proteinase cleavage of the virion surface proteins D8 and A27 correlated with activation, mutant viruses constructed by individually deleting these genes did not exhibit an activated phenotype. We propose a two-step model of vaccinia virus entry through endosomes, in which activating or unmasking the fusion complex by low pH or by proteinase is rate limiting but does not eliminate a second low-pH step mediating membrane fusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available