4.7 Article

Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone

Journal

TREE PHYSIOLOGY
Volume 27, Issue 8, Pages 1207-1215

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/27.8.1207

Keywords

dynamic light environment; gas exchange; photosynthetic limitations; sun/shade acclimation

Categories

Ask authors/readers for more resources

We examined the principal differences in photosynthetic characteristics between sun and shade foliage and determined the relative importance of biochemical and stomatal limitations during photosynthetic induction. Temperate-zone broadleaf and conifer tree species, ranging widely in shade tolerance, were investigated from one locality in the Czech Republic. The study species included strongly shadetolerant Abies alba Mill. and Tilia cordata Mill., less shade-tolerant Fagus sylvatica L. and Acer pseudoplatanus L. and sun-demanding Picea abies (L.) Karst. In the fully activated photosynthetic state, sun foliage of all species had significantly higher maximum CO, assimilation rates, maximum stomatal conductance and maximum rates of carboxylation than shade foliage. Compared with shade leaves, sun leaves had significantly higher nocturnal stomatal conductances. In all species, shade foliage tended to have higher induction states 60 s after leaf illumination than sun foliage. Sun and shade foliage did not differ in the rate of disappearance of the transient biochemical limitation during the induction phase. Longer time periods were required to reach 90% photosynthetic induction and 90% stomatal induction in sun folia2e than in shade foliage of the less shade-tolerant F sylvatica and A. pseudoplatanus and in sun-demanding P abies; however, in sun foliage of the strongly shade-tolerant species T cordata and A. alba, the time needed for photosynthetic induction was similar to, or less than, that for shade foliage. Shade but not sun needles of P abies and A. alba had significantly slower induction kinetics than the broadleaf tree species. Among species, the sun-demanding P. abies exhibited the shortest stomatal induction times in both sun and shade leaves. Independently of shade tolerance ranking, the transient stomatal and total limitations that characterize photosynthetic induction were relieved significantly earlier in shade foliage than in sun foliage. Sun foliage generally exhibited a hyperbolic photosynthetic induction response, whereas a sigmoidal induction response was more frequent in shade foliage. The different relative proportions of transient biochemical and stomatal limitations during photosynthetic induction in sun and shade foliage indicate an essential role of stomata in photosynthetic limitation during induction, mainly in shade foliage, with a consequent influence on the shape of the photosynthetic induction curve.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available