4.7 Article

Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39

Journal

PLANT MOLECULAR BIOLOGY
Volume 64, Issue 6, Pages 683-697

Publisher

SPRINGER
DOI: 10.1007/s11103-007-9189-0

Keywords

calcium; calmodulin; development; GUS transgenics; stress

Ask authors/readers for more resources

Various aspects of plant development and stress physiology are mediated by Ca2+ signaling. Ca2+ sensors, such as calmodulin, detect these signals and direct downstream signaling pathways by binding and activating diverse targets. Plants possess many unique, putative Ca2+ sensors, including a large family (50 in Arabidopsis) of calmodulin-like proteins termed CMLs. Some of these CMLs have been implicated in Ca2+-based stress response but most remain unstudied. We generated transgenic plants expressing CML::GUS reporter genes for members of a subfamily of CMLs (CML37, CML38 and CML39) which allowed us to investigate their expression patterns in detail. We found that CML::GUS genes displayed unique tissue, cell-type, and temporal patterns of expression throughout normal development, particularly in the flower, and in response to a variety of stimuli, including biotic and abiotic stress, hormone and chemical treatments. Our findings are supported by semiquantitative reverse-transcription PCR as well as analyses of microarray databases. Analysis of purified, recombinant CMLs demonstrated their ability to bind Ca2+ in vitro. Collectively, our data suggest that these CMLs likely play important roles as sensors in Ca2+-mediated developmental and stress response pathways and provide a framework of spatial and temporal expression to direct future studies aimed at elucidating their physiological roles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available