4.7 Article

A microarray chip for label-free detection of narcotics

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 391, Issue 5, Pages 1679-1688

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-008-1839-9

Keywords

protein microarray; imaging surface plasmon resonance; imaging ellipsometry; narcotics trace detection; biosensors; antibody displacement

Ask authors/readers for more resources

A protein array chip for label-free optical detection of low molecular weight compounds has been developed. As a proof of principle, the chip is proven capable of rapidly (approximately 1 min) determining hits from aqueous cocktails composed of four common narcotics, cocaine, ecstasy, heroin, and amphetamine, using imaging surface plasmon resonance (SPR) as the detection principle. The chip is produced by injecting a mixture of antibodies and letting them self-sort and bind to narcotic analog coupled proteins already present in a predefined pattern on the supporting substrate. An indirect detection method, where antibodies are displaced from the surface upon recognition of their corresponding narcotics, is used to obtain the optical contrast and thus a detectable SPR and/or ellipsometric signal. Two types of readouts are possible from the present setup: intensity SPR images and SPR/ellipsometric sensorgrams. Positive hits were routinely obtained for analyte concentrations of 50 pg/mu L and the limit of detection, without any parameter optimizations, seems to fall in the range 0.5 pg/mu L (1.4 nM) for heroin, 2.5 pg/mu L (8.2 nM) for cocaine, and 5 pg/mu L for the other two narcotics (26 nM for ecstasy and 37 nM for amphetamine). With improved readout possibilities (sampling frequency), signal evaluation algorithms, and antibody-antigen design strategies, we believe this limit can be further improved. The chip is shown to work for many measurement cycles with excellent reproducibility. Moreover, with a more advanced fluidic system, excess injected antibodies could be collected and reused for many cycles, which could make the running costs of the system very low. The chip is in no way limited to detection of narcotics. Other low molecular weight compounds could easily be detected on the same chip. For example, trinitrotoluene detection has already been demonstrated using our chip. Possible areas of application for the system are therefore envisaged in airport and underground transport security, customs, drug interdiction, forensics, and as warning alerts on military equipment and personnel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available