4.7 Article

Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China:: effect of planting conifers with broadleaved species

Journal

PLANT AND SOIL
Volume 297, Issue 1-2, Pages 201-211

Publisher

SPRINGER
DOI: 10.1007/s11104-007-9333-2

Keywords

mixed plantation; monospecific coniferous plantation; litterfall; mixed-species litter; litterbag study

Ask authors/readers for more resources

This study compared litter production, litter decomposition and nutrient return in pure and mixed species plantations. Dry weight and N, P, K, Ca, Mg quantities in the litterfall were measured in one pure Cunninghamia lanceolata plantation (PC) and two mixed-species plantations of C. lanceolata with Alnus cremastogyne (MCA) and Kalopanax septemlobus (MCK) in subtropical China. Covering 6 years of observations, mean annual litter production of MCA (4.97 Mg center dot ha(-1)) and MCK (3.97 Mg center dot ha(-1)) was significantly higher than that of PC (3.46 Mg center dot ha(-1)). Broadleaved trees contributed 42% of the total litter production in MCA and 31% in MCK. Introduction of broadleaved tree species had no significant effect on litterfall pattern. Total litterfall was greatest in the dry season from November to March. Nutrient returns to the forest floor through leaf litter were significantly higher in both MCA and MCK than in PC (P < 0.05). The amounts of N, K, and Mg returned to the forest floor through leaf litter were highest in the MCA, and P and Ca returns were highest in the MCK. Percent contribution of broadleaf litter to total nutrient returns ranged from 41.7% to 86.9% in MCA and from 49.3% to 74.8% in MCK. The decomposition rate of individual leaf litter increased in the order: C. lanceolata < K. septemlobus < A. cremastogyne. Litter mixing had a positive effect on decomposition rate of the more recalcitrant litter and promoted nutrient return. Relative to mass loss of A. cremastogyne decomposing alone, higher mass loss of the mixture of C. lanceolata and A. cremastogyne was observed after 330 days of decomposition. These results indicate that mixed plantations of different tree species have advantages over monospecific plantations with regards to nutrient fluxes and these advantages have relevance to restoration of degraded sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available