4.6 Article

Photoinduced melting of charge order in a quarter-filled electron system coupled with different types of phonons

Journal

PHYSICAL REVIEW B
Volume 76, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.075105

Keywords

-

Ask authors/readers for more resources

Photoinduced melting of charge order is calculated by using the exact many-electron wave function coupled with classically treated phonons in the one-dimensional quarter-filled Hubbard model with Peierls and Holstein types of electron-phonon couplings. The model parameters are taken from recent experiments on (EDO-TTF)(2)PF6 (EDO-TTF=ethylenedioxy-tetrathiafulvalene) with a (0110) charge order, where transfer integrals are modulated by molecular displacements (bond-coupled phonons) and site energies by molecular deformations (charge-coupled phonons). The charge-transfer photoexcitation from (0110) to (0200) configurations and that from (0110) to (1010) configurations have different energies. The corresponding excited states have different shapes of adiabatic potentials as a function of these two phonon amplitudes. The adiabatic potentials are shown to be useful in understanding differences in the photoinduced charge dynamics and the efficiency of melting, which depend not only on the excitation energy but also on the relative phonon frequency of the bond- and charge-coupled phonons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available