4.5 Article

Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00045.2007

Keywords

signaling; inflammation; mitogen-activated kinase; cytokines

Ask authors/readers for more resources

Thymic stromal lymphopoietin (TSLP) is a novel cytokine that triggers dendritic cell-mediated T helper (Th)-2 inflammatory responses. Previous studies have demonstrated that human airway smooth muscle cells (HASMC) play a critical role in initiating or perpetuating airway inflammation by producing chemokines and cytokines. In this study, we first evaluated the expression of TSLP in primary HASMC and investigated how proinflammatory cytokines (TNF-alpha and IL-1 beta) and Th-2 cytokines (IL-4, IL-9) regulate TSLP production from HASMC. TSLP mRNA and protein were assessed by real-time RT-PCR, ELISA, and immunofluorescence from primary HASMC cultures. Primary HASMC express constitutive level of TSLP. Incubation of HASMC with IL-1 or TNF-alpha resulted in a significant increase of TSLP mRNA and protein release from HASMC. Furthermore, combination of IL-1 beta and TNF-alpha has an additive effect on TSLP release by HASMC. Primary HASMC pretreated with inhibitors of p38 or p42/p44 ERK MAPK, but not phosphatidylinositol 3-kinase, showed a significant decrease in TSLP release on IL-1 beta and TNF-alpha treatment. Furthermore, TSLP immunoreactivity was present in ASM bundle from chronic obstructive pulmonary disease (COPD) and to lesser degree in normal subjects. Taken together, our data provide the first evidence of IL-1 beta- and TNF-alpha-induced TSLP expression in HASMC via (p38, p42/p44) MAPK signaling pathways. Our results raise the possibility that HASMC may play a role in COPD airway inflammation via TSLP-dependent pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available