4.6 Article

Measurement-based quantum computation with the toric code states

Journal

PHYSICAL REVIEW A
Volume 76, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.76.022304

Keywords

-

Ask authors/readers for more resources

We study measurement-based quantum computation (MQC) using as a quantum resource the planar code state on a two-dimensional square lattice (planar analog of the toric code). It is shown that MQC with the planar code state can be efficiently simulated on a classical computer if at each step of MQC the sets of measured and unmeasured qubits correspond to connected subsets of the lattice. The simulation scheme is built upon Barahona's algorithm for computing the partition function of the Ising model on a planar graph. Our results provide a simulation method for MQC centered around planarity of graphs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available