4.5 Article

Unusual assembly of small organic building molecules in common solvent

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 111, Issue 30, Pages 8885-8890

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0722962

Keywords

-

Ask authors/readers for more resources

During the process of self-association, reaching a thermodynamic equilibrium state in dilute solution is usually very fast, taking at most seconds for small organic (such as surfactants) solutions and hours for polymer solutions. It is very rare that days are necessary for soluble small organic molecules to reach thermodynamic stability in dilute solutions. This work reports such an unusually slow association of two polymerizable organic molecules, HOOC(CH2)(3)CCCC(CH2)(3)COOH and (EtO)(3)Si(CH2)(3)NH2, in their common solvent. The self-organization process of above complexes spanned several minutes to several days, depending on their concentrations. The morphologies of resultant aggregates, ranging from vesicles to solid spheres and to hollow spheres, were also tunable by varying the molar ratios of two precursors. Enriched functional COOH/NH2 groups on the aggregate surface can attach various antibodies, which endow the nanaoparticles with great potential applications as targeted drug-delivery vehicles. In addition, as-synthesized hybrid aggregates could be further stabilized by either addition reaction of diacetylenic acid or hydrolysis and condensation reactions of 3-aminopropyltriethoxysilane. In particular, the derived polydiacetylenic aggregates demonstrate a thermochromatic property and may be applied as sensing materials. Those novel phenomena, along with the simplicity in the preparation of aggregates, make the system promising in addressing related theoretical problems and practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available