4.6 Article

A kinase-anchoring protein 150 and calcineurin are involved in regulation of acid-sensing ion channels ASIC1a and ASIC2a

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 31, Pages 22668-22677

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703624200

Keywords

-

Funding

  1. NEI NIH HHS [R03 EY015267, R03 EY015267-03] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS042926, R01NS050610, R42 NS065515, R01NS42926, R01 NS050610] Funding Source: Medline

Ask authors/readers for more resources

Acid-sensing ion channel (ASIC) 1a and ASIC2a are acid-sensing ion channels in central and peripheral neurons. ASIC1a has been implicated in long-term potentiation of synaptic transmission and ischemic brain injury, whereas ASIC2a is involved in mechanosensation. Although the biological role and distribution of ASIC1a and ASIC2a subunits in brain have been well characterized, little is known about the intracellular regulation of these ion channels that modulates their function. Using pulldown assays and mass spectrometry, we have identified A kinase-anchoring protein (AKAP)150 and the protein phosphatase calcineurin as binding proteins to ASIC2a. Extended pull-down and co-immunoprecipitation assays showed that these regulatory proteins also interact with ASIC1a. Transfection of rat cortical neurons with constructs encoding green fluorescent protein- or hemagglutinin-tagged channels showed expression of ASIC1a and ASIC2a in punctate and clustering patterns in dendrites that co-localized with AKAP150. Inhibition of protein kinase A binding to AKAPs by Ht-31 peptide reduces ASIC currents in cortical neurons and Chinese hamster ovary cells, suggesting a role of AKAP150 in association with protein kinase A in ASIC function. We also demonstrated a regulatory function of calcineurin in ASIC1a and ASIC2a activity. Cyclosporin A, an inhibitor of calcineurin, increased ASIC currents in Chinese hamster ovary cells and in cortical neurons, suggesting that activity of ASICs is inhibited by calcineurin-dependent dephosphorylation. These data imply that ASIC down-regulation by calcineurin could play an important role under pathological conditions accompanying intracellular Ca2+ overload and tissue acidosis to circumvent harmful activities mediated by these channels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available