4.6 Article

Development, optimization, and characterization of electrospun poly(lactic acid) nanofibers containing multi-walled carbon nanotubes

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 105, Issue 3, Pages 1668-1678

Publisher

WILEY
DOI: 10.1002/app.26288

Keywords

electrospinning; polymers; nanofibers; carbon nanotubes; electrical properties; mechanical properties; electron microscopy

Ask authors/readers for more resources

Electrospinning of poly (L-D-lactic acid) (PLA) was investigated with the addition of multi-walled carbon nanotubes (MWNT) for development of a scaffold for tissue engineering. Through this experiment, it was determined that the optimal concentration of PLA with weight average molecular weight (M-w) 250,000 g/mol is similar to 20 wt % as indicated by scanning electron microscopy. This concentration produces fibers with no beading or film formation. The preferred solvent system is a combination of chloroform and dimethyl formamide to alleviate the volatile action of chloroform. The optimum processing parameters for PLA are an electric field of 1 kV/cm which was determined by a surface response plot to minimize fiber diameter based on the applied voltage, working distance, and addition of MWNT. Fourier Transform infrared spectroscopy has indicated the removal of the solvent system. With the addition of MWNT, the fiber diameter was drastically reduced by 70%, to form fibers with a mean diameter of 700 nm. This is believed to be due to an increased surface charge density for the MWNT/polymer solution. Transmission electron microscopy validated the alignment of the MWNT within the fibers. MWNT loading exhibited an increase in the conductance of the scaffold and the tensile modulus at an optimal loading level of 0.25 wt %. (c) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available