4.8 Article

Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0702387104

Keywords

hypoxia inducible factor; receptor tyrosine kinase signaling; tumor microenvironment; VHL

Ask authors/readers for more resources

Overexpression of the EGF receptor (EGFR) is a recurrent theme in human cancer and is thought to cause aggressive phenotypes and resistance to standard therapy. There has, thus, been a concerted effort in identifying EGFR gene mutations to explain misregulation of EGFR expression as well as differential sensitivity to anti-EGFR drugs. However, such genetic alterations have proven to be rare occurrences in most types of cancer, suggesting the existence of a more general physiological trigger for aberrant EGFR expression. Here, we provide evidence that overexpression of wild-type EGFR can be induced by the hypoxic microenvironment and activation of hypoxia-inducible factor 2-alpha (HIF2 alpha) in the core of solid tumors. Our data suggest that hypoxia/HIF2 alpha activation represents a common mechanism for EGFR overexpression by increasing EGFR mRNA translation, thereby diminishing the necessity for gene mutations. This allows for the accumulation of elevated EGFR levels, increasing its availability for the autocrine signaling required for tumor cell growth autonomy. Taken together, our findings provide a nonmutational explanation for EGFR overexpression in human tumors and highlight a role for HIF2 alpha activation in the regulation of EGFR protein synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available