4.7 Article

Modeling DNA in confinement: A comparison between the brownian dynamics and lattice boltzmann method

Journal

MACROMOLECULES
Volume 40, Issue 16, Pages 5978-5984

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma070729t

Keywords

-

Ask authors/readers for more resources

There is considerable interest in understanding the dynamics of complex fluids, including macromolecular solutions, in microfluidic devices. That interest has fueled the development of simulation techniques capable of describing the effect of hydrodynamic interactions in confined complex fluids. In this work, we examine the dynamics of DNA and the concomitant chain migration that arises in a parallel plate slit, at equilibrium and under pressure-driven flow. Results are presented from both the lattice Boltzmann method (LBM) and the Brownian dynamics simulations with fluctuating hydrodynamic interactions (BD-HI). It is found that the results of both methods are consistent with each other. We find that the lattice Boltzmann method is well-suited for long polymer chains as well as semidilute and concentrated DNA solutions, while Brownian dynamics is more efficient in dilute DNA solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available