4.8 Article

Fog2 excision in mice leads to premature mammary gland involution and reduced Esr1 gene expression

Journal

ONCOGENE
Volume 26, Issue 36, Pages 5204-5213

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1210333

Keywords

GATA; FOG2; estrogen receptor; transcription factor; mammary; involution

Ask authors/readers for more resources

The critical role for GATA family proteins in maintaining the normal (non-transformed) cell state is corroborated by the recent findings of mutations or methylation in GATA genes both in primary cancers and tumor lines including breast. Previously, microarray pro. ling studies determined that the highest expression of both GATA3 and ESR1 ( estrogen receptor a) is seen in tumors associated with the most favorable survival outcomes, whereas the lowest expression of GATA3 is detected in tumor subtypes showing the worst outcomes. At this time, genes and pathways that are regulated by GATA3 in the mammary gland are not well defined. We have previously established a requirement for FOG ( Friend Of GATA) cofactors during mouse development. Here we report that in the murine mammary gland Fog2 gene expression is upregulated upon pregnancy and lactation with prominent expression in the epithelial cells of the gland during post-lactational regression. Mammary-specific deletion of Fog2 identified a role for this gene during gland involution; excision of the Fog2 gene leads to the accelerated involution of the gland despite diminished levels of the remodeling enzymes. Importantly, the levels of several genes linked to the control of cancerous transformation in the breast ( Esr1, Prg and Foxa1) are significantly reduced upon Fog2 excision. This implicates FOG2 in the maintenance of epithelial cell differentiation in the mammary gland and in performing a protective role in breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available