4.6 Article

Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1160, Issue 1-2, Pages 90-98

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2007.05.082

Keywords

hydroxylated poly(glycidylmethacrylate-co-ethylenedimethacrylate); monolithic capillary; in-tube solid-phase microextraction; high-performance; liquid chromatography

Ask authors/readers for more resources

A hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic capillary was prepared and investigated for in-tube solid-phase microextraction (SPME). The polymer monolith was synthesized by in-situ polymerization of GMA and EDMA in the presence of dodecanol and toluene as the mixed porogenic solvents. After polymerization, glycidyl groups were hydrolyzed with sulfuric acid to produce diol groups at the surface of the porous monolith. To investigate the extraction mechanism, several groups of model analytes (including neutral, acidic and basic) were selected to perform extractions. The resulting monolith showed high extraction selectivity towards polar compounds, which resulted from the enhancement of dipole-dipole and hydrogen bonding interactions relative to hydrophobic interactions. The equilibrium extraction time profiles were also monitored for those model compounds to assess the extraction capacity of the monolithic capillary. Moreover, the hydroxylated poly(GMA-co-EDMA) monolithic capillary exhibited satisfactory reproducibility and stability. Finally, the in-tube SPME-HPLC method, based on the developed monolithic capillary as the extraction media, was successfully applied to the determination of five polar organic contaminants in lake water. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available