4.7 Article

Influence of thermostats and carrier gas on simulations of nucleation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 6, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2752154

Keywords

-

Ask authors/readers for more resources

We investigate the influence of carrier gas and thermostat on molecular dynamics (MD) simulations of nucleation. The task of keeping the temperature constant in MD simulations is not trivial and an inefficient thermalization may have a strong influence on the results. Different thermostating mechanisms have been proposed and used in the past. In particular, we analyze the efficiency of velocity rescaling, Nose-Hoover, and a carrier gas (mimicking the experimental situation) by extensive MD simulations. Since nucleation is highly sensitive to temperature, one would expect that small variations in temperature might lead to differences in nucleation rates of up to several orders of magnitude. Surprisingly, the results indicate that the choice of the thermostating method in a simulation does not have-at least in the case of Lennard-Jones argon-a very significant influence on the nucleation rate. These findings are interpreted in the context of the classical theory of Feder [Adv. Phys. 15, 111 (1966)] by analyzing the temperature distribution of the nucleating clusters. We find that the distribution of cluster temperatures is non-Gaussian and that subcritically sized clusters are colder while postcritically sized clusters are warmer than the bath temperature. However, the average temperature of all clusters is found to be always higher than the bath temperature. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available