4.7 Article

The TFIID subunit TAF4 regulates keratinocyte proliferation and has cell-autonomous and non-cell-autonomous tumour suppressor activity in mouse epidermis

Journal

DEVELOPMENT
Volume 134, Issue 16, Pages 2947-2958

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.005041

Keywords

alopecia; hair cycle; growth factors; EGF; TPA; Wnt pathway; homologous recombination

Ask authors/readers for more resources

The TAF4 subunit of transcription factor TFIID was inactivated in the basal keratinocytes of foetal and adult mouse epidermis. Loss of TAF4 in the foetal epidermis results in reduced expression of the genes required for skin barrier function, leading to early neonatal death. By contrast, TAF4 inactivation in adult epidermis leads to extensive fur loss and an aberrant hair cycle characterised by a defective anagen phase. Although the mutant epidermis contains few normal anagen-phase hair follicles, many genes expressed at this stage are strongly upregulated indicating desynchronised and inappropriate gene expression. The TAF4 mutant adult epidermis also displays interfollicular hyperplasia associated with a potent upregulation of several members of the EGF family of mitogens. Moreover, loss of TAF4 leads to malignant transformation of chemically induced papillomas and the appearance of invasive melanocytic tumours. Together, our results show that TAF4 is an important regulator of keratinocyte proliferation and has cell-autonomous and non-cell-autonomous tumour suppressor activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available