4.5 Article

Novel role for insulin as an autocrine growth factor for malignant brain tumour cells

Journal

BIOCHEMICAL JOURNAL
Volume 406, Issue -, Pages 57-66

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20070309

Keywords

Akt; atypical teratoid/rhabdoid tumour (AT/RT); cell proliferation; central nervous system; insulin-like growth factor (IGF); phosphoinositide 3-kinase (PI3K)

Ask authors/readers for more resources

AT/RTs (atypical teratoid/rhabdoid tumours) of the CNS (central nervous system) are childhood malignancies associated with poor survival rates due to resistance to conventional treatments such as chemotherapy. We characterized a panel of human AT/RT and MRT (malignant rhabdoid tumour) cell lines for expression of RTKs (receptor tyrosine kinases) and their involvement in turnout growth and survival. When compared with normal brain tissue, AT/RT cell lines overexpressed the IR (insulin receptor) and the IGFIR (insulin-like growth factor-I receptor). Moreover, insulin was secreted by AT/RT cells grown in serum-free medium. Insulin potently activated Akt (also called protein kinase B) in AT/RT cells, as compared with other growth factors, such as epidermal growth factor. Pharmacological inhibitors, neutralizing antibodies, or RNAi (RNA interference) targeting the IR impaired the growth of AT/RT cell lines and induced apoptosis. Inhibitors of the PI3K (phosphomositide 3-kinase)/Akt pathway also impaired basal and insulin-stimulated AT/RT cell proliferation. Experiments using RNAi and isoform-specific pharmacological inhibitors established a key role for the class I-A PI3K p110 alpha isoform in AT/RT cell growth and insulin signalling. Taken together, our results reveal a novel role for autocrine signalling by insulin and the IR in growth and survival of malignant human CNS tumour cells via the PI3K/Akt pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available