4.7 Article

Highly sensitive and selective organophosphate screening in twelve commodities of fruits, vegetables and herbal medicines by dispersive liquid-liquid microextraction

Journal

ANALYTICA CHIMICA ACTA
Volume 775, Issue -, Pages 58-66

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2013.02.043

Keywords

Organophosphorus pesticides; Dispersive liquid-liquid microextraction; Preconcentration; Fruits; Vegetables; Herbs

Funding

  1. University Grants Council
  2. Hong Kong Baptist University [FRG2/11-12/040]

Ask authors/readers for more resources

The article describes a simple sample pretreatment procedure for the analysis of ten organophosphorus pesticides using dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) in three distinctively different types of matrices: fresh fruits, fresh vegetables and dried herbs. The method was carefully developed, focusing on the chemistry of various dispersive solvents, to achieve simultaneous, comprehensive extraction and preconcentration in a great span of selected matrices. According to matrix-matched validation study, the set of optimized DLLME conditions has been proven robust to determine target OPPs within a wide linear range from 0.1 to 1000 mu g L-1. With limited usage of organic extractants, remarkable enrichment factors up to 100-fold were obtained, enabling ultra-trace pesticide quantification down to sub-ppt levels at 0.12-4.92 ng kg(-1). Practical application of the method was illustrated by quantitative recovery (70-119%) and good precision (2.6-10% R.S.D.) in a representative range of three fruits and four vegetable commodities featured by the CODEX Alimentarius classification as well as their unique matrix compositions. A careful selection of dried herbs was further classified based on their morphological structures to validate analytical ruggedness of the method. Compared with existing methods for food analysis vis-a-vis OPPs, the present method is superior in terms of high sample throughput, minimal solvent consumption, and small sample size requirement. An additional, significant aspect of this universal DLLME method is that it models sample pretreatment methods with wide coverage of analytical matrices that are more effective, more comprehensive, and more flexible than those currently being used. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available