4.5 Article

1,2-Dimethylimidazole-4-sulfonyl chloride, a novel derivatization reagent for the analysis of phenolic compounds by liquid chromatography electrospray tandem mass spectrometry: Application to 1-hydroxypyrene in human urine

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jchromb.2007.04.039

Keywords

liquid chromatography electrospray ionization tandem mass spectrometry; chemical derivatization of phenols; dimethylimidazolesulfonyl derivatives; 1-hydroxypyrene

Funding

  1. NCI NIH HHS [CA81243, R01 CA081243-07, R01 CA081243] Funding Source: Medline
  2. PHS HHS [U1Q/CCU221159-04-2] Funding Source: Medline

Ask authors/readers for more resources

A novel derivatization method employing 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) to improve the mass spectrometric response for phenolic compounds in liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (LC-ESI-MS/MS) is described. Several environmentally relevant compounds, including chloro-, aryl- and alkylphenols, steroidal estrogens, and hydroxy-polycyclic aromatic tydrocarbons (OHPAHs), were selected to evaluate this technique. A facile derivatization procedure employing DMISC results in dimethylimidazolesulfonyl (DMIS) derivatives that are stable in aqueous solution. These DMIS derivatives produced intense [M + H](+) ions in positive-ion LC-ESI-MS. The product ion spectra of the [M + H](+) ions of simple phenols were dominated by ions representing the DMIS and dimethylimidazole moieties, whereas product ion spectra of the DMIS derivatives of OHPAHs with three or more fused aromatic rings showed prominent ArO+ ions, he relative intensity of which increased with the number of rings. The DMIS derivatives of the selected phenolic compounds showed excellent chromatographic properties. To substantiate the utility of derivatization with DMISC, an analytical method employing enzyme hydrolysis, solid phase extraction, derivatization with DMISC, and analysis by LC-ESI-MS/MS with multiple reaction monitoring for determination in human urine of 1-hydroxypyrene, a widely used biomarker for the assessment of human exposure to PAHs, was developed and validated. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available