4.7 Article

Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration caused by elevated production of cGMP in the dark

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 33, Pages 8805-8815

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2751-07.2007

Keywords

rod; retina; degeneration; cGMP; GCAP; guanylyl cyclase; calcium

Categories

Funding

  1. NEI NIH HHS [R01 EY001844, P30 EY000331, R01 EY011522-12, EY01844, P30 EY004068, R37 EY001844, EY 00331, R01 EY011522, EY04068, EY11522] Funding Source: Medline

Ask authors/readers for more resources

Previous experiments indicate that congenital human retinal degeneration caused by genetic mutations that change the Ca2+ sensitivity of retinal guanylyl cyclase (retGC) can result from an increase in concentration of free intracellular cGMP and Ca2+ in the photoreceptors. To rescue degeneration in transgenic mouse models having either the Y99C or E155G mutations of the retGC modulator guanylyl cyclase-activating protein 1 (GCAP-1), which produce elevated cGMP synthesis in the dark, we used the G90D rhodopsin mutation, which produces constitutive stimulation of cGMP hydrolysis. The effects of the G90D transgene were evaluated by measuring retGC activity biochemically, by recording single rod and electroretinogram (ERG) responses, by intracellular free Ca2+ measurement, and by retinal morphological analysis. Although the G90D rhodopsin did not alter the abnormal Ca2+ sensitivity of retGC in the double-mutant animals, the intracellular free cGMP and Ca2+ concentrations returned close to normal levels, consistent with constitutive activation of the phosphodiesterase PDE6 cascade in darkness. G90D decreased the light sensitivity of rods but spared them from severe retinal degeneration in Y99C and E155G GCAP-1 mice. More than half of the photoreceptors remained alive, appeared morphologically normal, and produced electrical responses, at the time when their siblings lacking the G90D rhodopsin transgene lost the entire retinal outer nuclear layer and no longer responded to illumination. These experiments indicate that mutations that lead to increases in cGMP and Ca2+ can trigger photoreceptor degeneration but that constitutive activation of the transduction cascade in these animals can greatly enhance cell survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available